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Outline of Presentation
Project Quad Chart 

Why is the problem important?

Thumbnail: How have we tried to solve the problem?

What have we done in the past 12 months?
Jun 00 to Dec 00: Demonstrate the application of our 
work to predict and control CPU usage in active applications 
(together with GE, Magician, and AVNMP)
Jan 01 to Jun 01: Turn the demonstrations into 
accurately measured, controlled experiments, confirming 
results, and writing papers and a Ph.D. dissertation 

Summary & What’s next? (1) Future Research (Address Failures)
(2) Prepare code and documentation for release on the project 
web site (3) Develop a white-box model 
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Measurement and Modeling for Resource Prediction 
and Control in Heterogeneous Active Networks

Projected Impact

Effective policy enforcement provides  
security and reliability essential for well-
engineered active nets.

An independent CPU metric permits 
resource requirements to be expressed 
across a heterogeneous set of active nodes 
to support:

• node-level policy enforcement,
• static path-level network admission 

control,
• dynamic path-level QoS routing.

Goal
Devise and validate a means to express the CPU time 

requirements of a mobile-code application in a form that 
can be meaningfully interpreted among heterogeneous 
nodes in an active network.

Technical Approach
• Propose abstract mathematical models for active 

network nodes and active applications.
• Validate the abstract models against measurements 

from real active nodes and applications.
• Prototype validated mechanisms in a node operating 

system and evaluate them in live operations.

FY01 Accomplishments
• Demonstrated the application of our work to predictive
estimation and control of resource requirements for an 
Active Application. (collaboration with GE research)

• Based on encouraging results from the demonstration,
modified Magician and AVNMP to make more precise
and accurate measurements, and then conducted 
controlled experiments to confirm the demonstration. 

• Published two papers on the application of our work.

“How Much CPU Time?”
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Growing Population of Mobile
Programs on Heterogeneous Platforms

dlls, dlls, and more dlls

APPLETS &
SERVLETS

SCRIPTING ENGINES & LANGUAGES

Python

MOBILE
AGENTS

C#
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Sources of Variability
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VARIABILITY IN EXECUTION ENVIRONMENT
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Statistically Compare 
Simulation Results 
against Measured 
Data
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Monte Carlo 
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236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50  bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50  bins-20000 reps100 bins-20000 reps

Statistically Compare 
Simulation Results 
against Measured 
Data

Simulate 
Model with 
Monte Carlo 
Experiment

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50  bins-20000 reps100 bins-20000 reps

236.66120.30130.73Route

321.77320.70330.44Ping
Magician

164.9130.351.90.40Mcast

102.7020.640.90.86Ping
ANTS

Avg. High Per.MeanAvg. High Per.MeanAvg. High Per.MeanAAEE

50 bins-500 reps50  bins-20000 reps100 bins-20000 reps

Trace is a series of system calls and 
transitions stamped with CPU time use

AA2
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Monitor at
System Calls 

in Active Node OS
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Trace is a series of system calls and 
transitions stamped with CPU time use
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Our Approach in Thumbnail

Scenario A: 
sequence = “read-write”, 
probability = 2/5

Scenario B: 
sequence = “read-kill”, 
probability = 3/5
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Scaling AA Models
AA model on node X:
read  30 cc
user  10 cc
write 20 cc

Model of node X:
read  40 cc
write 18 cc
user  13 cc

Model of node Y:
read  20 cc
write 45 cc
user   9 ccscale

AA model on node Y:
read  30*20/40 = 15 cc
user  10*9/13  =  7 cc
write 20*45/18 = 50 cc
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read  30*20/40 = 15 cc
user  10*9/13  =  7 cc
write 20*45/18 = 50 cc
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What have we done in the 
past 12 months?

Jun 00 to Dec 00: Demonstrated the application of our 
work to predict and control CPU usage in active applications 
(together with GE, Magician, and AVNMP)

Jan 01 to Jun 01: Turned the demonstrations into 
accurately measured, controlled experiments, confirming 
results, and writing papers and a Ph.D. dissertation 



6/05/01 8

Control Demo Revisited
Policy 1: Use CPU time-to-live set to fixed value per packet
Policy 2: Use a CPU usage model, but scaled naively based solely on CPU speed
Policy 3: Use a well-scaled NIST CPU usage model

Naïve Scaling

High Fidelity
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TTLTTL

Prediction Demo Revisited
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With the NIST CPU usage model integrated, AVNMP requires fewer rollbacks 
And so AVNMP can predict CPU usage in the network further into the future
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• Completed true integration of NIST LINUX kernel measurement code with 
Magician and AVNMP control and prediction code (in Java)

• Modified AVNMP MIB to distinguish between  CPU vs. packet stimulated 
rollbacks (and to prevent periodic resetting of values)

• Recalibrated demonstration nodes (and evaluated the calibrations and our 
models using selected Magician AAs – ping, route, activeAudio – new results 
given on next slide)

• Ran the two demonstrations again, but this time as controlled experiments 
(new results given on subsequent slides)

• Wrote two papers describing the control and prediction experiments

• Completed draft dissertation (Virginie Galtier)

From Demo to Experiment
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Evaluating Scaled AA Models
Prediction Error Measured when Scaling Application Models between Selected Pairs of Nodes 

vs. Scaling with Processor Speeds Alone (MAGICIAN EE)

NEW RESULTS -- MAY 2001   Scaling with 
model 

Scaling with 
processors 

speeds 

AA Node 
X 

Node 
Y Mean

Avg. 
High 
Perc. 

Mean
Avg. 
High 
Perc. 

K B 18 12 49 32
R G 21 32 74 72
R K 3 14 18 16
Y K 8 18 84 81Pi

ng
 

G Y 4 18 193 160
K Y 16 22 341 404
Y R 2 14 76 75
K B 6 13 13 30
G K 13 11 46 52R

ou
te

 
Y G 2 21 57 58
Y B 11 27 85 83
K Y 13 14 400 399
G Y 9 10 80 143
G B 9 17 74 58A

ud
io

 

Y K 7 12 80 80
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Experiment #1: Control Execution of Mobile Code

Fastest
Intermediate

Node

Slowest
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Node

Destination
node

Sending
node

Malicious
packet

Good
packets
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packets

Malicious Packet dropped too late 
(CPU use reached TTL + tolerance)

Needed 
execution time

CPU time “stolen”

TTL

Good packet dropped early
(CPU use reached TTL +  tolerance)

TTL

CPU time 
possibly “wasted” Additional CPU 

time needed
When mobile code CPU usage 
controlled with fixed allocation or 
TTL, malicious or “buggy” mobile 
programs can “steal” substantial CPU 
cycles, especially on fast nodes

When mobile code CPU usage controlled with 
fixed allocation or TTL, correctly coded 
mobile programs can be terminated too soon 
on slow nodes, wasting substantial CPU cycles

Goals: (1) Show reduced CPU usage by terminating malicious packets earlier AND
(2) Show fewer terminations of good packets
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CPU Control: Experiment Results

7.63
(6.3% estimated CPU time saved)

8.15Estimated Average CPU Utilization (ms/packet) 
Fast Intermediate Node

10 (0.4%)72 (3%)Good Packets Killed (all nodes)

NIST CPU ModelFixed TTL ModelMetric

36.35NIST Model Threshold 
99th percentile

39.87Time-to-Live (ms)

379Malicious Packets

2278Good Packets

ValueParameter

Difference in Per Packet CPU Usage (TTL - NIST Model)

-1

-0.5

0

0.5

1

1.5

Measurement Interval

S
av

in
g

s 
in

 C
P

U
 U

se
 (

m
s 

p
er

 p
ac

ke
t)

0.5Predicted CPU time saved 
(ms/packet)      [ANALYSIS]

Predicted vs. Measured

0.52Estimated CPU time saved 
(ms/packet)      [EXPERIMENT]

Summary of Results

Experiment Parameters

Results vs. Prediction



6/05/01 14

Experiment #2: Predict CPU Usage 
among Heterogeneous Network Nodes

AVNMP AA
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Goals: (1) Show improved look ahead into virtual time AND
(2) Show fewer tolerance rollbacks in the simulation
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CPU Prediction: Experiment Results

Look Ahead - NIST Model vs. TTL
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Publications Since June 2000
Papers
Y. Carlinet, V. Galtier, K. Mills, S. Leigh, A. Rukhin, “Calibrating an Active Network 

Node,” Proceedings of the 2nd Workshop on Active Middleware Services, ACM, 
August 2000. 

V. Galtier, K. Mills, Y. Carlinet, S. Leigh, A. Rukhin, “Expressing Meaningful Processing 
Requirements among Heterogeneous Nodes in an Active Network,” Proceedings of 
the 2nd International Workshop on Software Performance, ACM, September 2000. 

V. Galtier, K. Mills, Y. Carlinet, S. Bush, and A. Kulkarni, “Predicting and Controlling 
Resource Usage in a Heterogeneous Active Network”, accepted by 3rd International 
Workshop on Active Middleware Services, ACM, August 2001.

V. Galtier, K. Mills, Y. Carlinet, S. Bush, and A. Kulkarni, “Predicting Resource Demand 
in Heterogeneous Active Networks”, accepted by MILCOM 2001, October 2001.

Dissertation
V. Galtier, Toward finer grain management of computational resources in heterogeneous 

active networks (Vers une gestion plus fine des ressources de calcul des réseaux 
actifs hétérogènes), Henri Poincaré University Nancy I, Advisors: André Schaff and 
Laurent Andrey, projected graduation October 2001.

Papers available on the project web site: http://w3.antd.nist.gov/active-nets/



6/05/01 17

Future Research (& Failures)

Improve Black-box Model (recent failures)
Space-Time Efficiency
Account for Node-Dependent Conditions
Characterize Error Bounds

Investigate Alternate Models
White-box Model (currently underway)
Lower-Complexity Analytically Tractable Models (original failure)
Models that Learn

Investigate Prediction based on Competition
Run and Score Competing Predictors for Each Application
Reinforce Good Predictors
Use Prediction from Best Scoring Model
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Additional Work Since June 2000
Investigating white-box approach to model CPU needs for mobile code

p5s5t5intValue

p1s1t1deliverToApp

p6s6t6routeForNode

p4s4t4getDst

p3s3t3getCache

p2s2t2getAddress

99th PStd DevAvg.EE Function

Calibrated CPU Usage Integer f = (Integer)n.getCache().get(getDst())
if (f != null) { next = f.intValue(); 

if (n.getAddress() != getDst()) 
{ return n.routeForNode(this, next); }

else { return n.deliverToApp(this, dpt); }

Active ApplicationCalibrate EE by Functions

Active Application Model
L = delay (t3 + t4)

if (c1) {delay (t5 + t2 + t4)
if (c2) delay (t6)}

else {delay (t1)}

For each arriving packet,
determine conditions
and sum delays based
on EE function 
calibration.

14931455255224475Measured

500484239224318Predicted
99th Percentile

200351165154156Measured

9624012261163Predicted
Standard Deviation

334250197172150Measured

333183175164205Predicted
Average

AA5AA4AA3AA2AA1Statistic
Some Preliminary Results (using the PLAN EE) – all times are us/packet


